skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Paolo Visca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Paolo Visca (Ed.)
    With the pressing antibiotic resistance pandemic, antivirulence has been increasingly explored as an alternative strategy against bacterial infections. The bacterial type IV pilus (T4P) is a well-documented virulence factor and an attractive target for small molecules for antivirulence purposes. The PilB ATPase is essential for T4P biogenesis because it catalyzes the assembly of monomeric pilins into the polymeric pilus filament. Here, we describe the identification of two PilB inhibitors by a high-throughput screen (HTS) in vitro and their validation as effective inhibitors of T4P assembly in vivo. We used Chloracidobacterium thermophilum PilB as a model enzyme to optimize an ATPase assay for the HTS. From a library of 2,320 compounds, benserazide and levodopa, two approved drugs for Parkinson’s disease, were identified and confirmed biochemically to be PilB inhibitors. We demonstrate that both compounds inhibited the T4P-dependent motility of the bacteria Myxoccocus xanthus and Acinetobacter nosocomialis. Additionally, benserazide and levodopa were shown to inhibit A. nosocomialis biofilm formation, a T4P-dependent process. Using M. xanthus as a model, we showed that both compounds inhibited T4P assembly in a dose-dependent manner. These results suggest that these two compounds are effective against the PilB protein in vivo. The potency of benserazide and levodopa as PilB inhibitors both in vitro and in vivo demonstrate potentials of the HTS and its two hits here for the development of anti-T4P chemotherapeutics. 
    more » « less